skip to main content


Search for: All records

Creators/Authors contains: "Davies, James F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Internally-mixed aerosol particles containing organic molecules and inorganic salts are prevalent in the atmosphere, arising from direct emission ( e.g., from the ocean) or indirect production by condensation of organic vapors onto existing inorganic particle seeds. Aerosol particles co-exist with water vapor and, under humid conditions, will exist as dilute aqueous solution particles that can be well described by thermodynamic models. Under low humidity conditions, the increase in solute concentrations leads to molecular interactions and significant non-ideality effects that drive changes in important physical properties, such as viscosity and phase state, that are not predicted using simple models. Here, we explore a model system containing ammonium sulfate (AS) and citric acid (CA). We measure the hygroscopicity, viscosity, and rate of water diffusion in particles across a range of RH conditions and organic fractions to better understand the influence of organic–inorganic mixtures on particle properties. We report the RH dependence of these properties and explore the applicability of commonly used methods that connect them together, such as the Stokes–Einstein relationship and thermodynamic modelling methods. We show that at low RH, the addition of AS to CA leads to a reduction in the amount of water as indicated by the radial growth factor at a fixed RH, while observing an increase in the viscosity over several orders of magnitude. Contrary to the viscosity, only minor changes in water diffusion were measured, and analysis with the fractional Stokes–Einstein relationship indicates that changes in the molecular matrix due to the presence of AS could explain the observed phenomena. This work reveals that small additions of electrolytes can drive large changes in particle properties, with implications for chemical reactivity, lifetime, and particle phase that will influence the environmental impacts and chemistry of aerosol particles. 
    more » « less
  2. The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic–inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability. 
    more » « less
  3. null (Ed.)
    Atmospheric aerosol particles are commonly complex, aqueous organic-inorganic mixtures, and accurately predicting the properties of these particles is essential for air quality and climate projections. The prevailing assumption is that aqueous organic-inorganic aerosols exist predominately with liquid properties and that the hygroscopic inorganic fraction lowers aerosol viscosity relative to the organic fraction alone. Here, in contrast to those assumptions, we demonstrate that increasing inorganic fraction can increase aerosol viscosity (relative to predictions) and enable a humidity-dependent gel phase transition through cooperative ion-molecule interactions that give rise to long-range networks of atmospherically relevant low-mass oxygenated organic molecules (180 to 310 Da) and divalent inorganic ions. This supramolecular, ion-molecule effect can drastically influence the phase and physical properties of organic-inorganic aerosol and suggests that aerosol may be (semi)solid under more conditions than currently predicted. These observations, thus, have implications for air quality and climate that are not fully represented in atmospheric models. 
    more » « less
  4. Abstract. Acid-catalyzed multiphase chemistry of epoxydiols formed from isopreneoxidation yields the most abundant organosulfates (i.e., methyltetrolsulfates) detected in atmospheric fine aerosols in the boundary layer. Thispotentially determines the physicochemical properties of fine aerosols inisoprene-rich regions. However, chemical stability of these organosulfatesremains unclear. As a result, we investigate the heterogeneous oxidation ofaerosols consisting of potassium 3-methyltetrol sulfate ester(C5H11SO7K) by gas-phase hydroxyl (OH) radicals at a relativehumidity (RH) of 70.8 %. Real-time molecular composition of the aerosolsis obtained by using a Direct Analysis in Real Time (DART) ionization sourcecoupled to a high-resolution mass spectrometer. Aerosol mass spectra revealthat 3-methyltetrol sulfate ester can be detected as its anionic form(C5H11SO7-) via direct ionization in the negativeionization mode. Kinetic measurements reveal that the effective heterogeneousOH rate constant is measured to be 4.74±0.2×10-13 cm3 molecule−1 s−1 with a chemical lifetime against OHoxidation of 16.2±0.3 days, assuming an OH radical concentration of1.5×106 molecules cm−3. Comparison of this lifetime withthose against other aerosol removal processes, such as dry and wetdeposition, suggests that 3-methyltetrol sulfate ester is likely to bechemically stable over atmospheric timescales. Aerosol mass spectra only showan increase in the intensity of bisulfate ion (HSO4-) afteroxidation, suggesting the importance of fragmentation processes. Overall,potassium 3-methyltetrol sulfate ester likely decomposes to form volatilefragmentation products and aqueous-phase sulfate radial anion(SO4⚫-). SO4⚫- subsequently undergoesintermolecular hydrogen abstraction to form HSO4-. These processesappear to explain the compositional evolution of 3-methyltetrol sulfate esterduring heterogeneous OH oxidation. 
    more » « less